笔趣阁 > 从全能学霸到首席科学家 > 第三百五十八章 感谢你提出一个致命的问题?

第三百五十八章 感谢你提出一个致命的问题?


  时间很快过去,论文很长,林晓的讲述也很久。
  特别是他在提出了林氏曲率张量方法之后,就需要运用这个方法所处理的大量计算过程,他当初就花费了一个月的时间才完成了整個计算的过程,同时又由于这段极为繁杂的计算是十分必要的,所以在这场报告上,他也不得不花费较多的时间来对这部分内容进行讲解。
  而事实上,有不少看完了他的证明的数学家,就是在这部分内容中存在一些问题,于是经过了他的讲述之后,这些数学家也就没有了问题,而后便忍不住在心中感叹不愧是林晓,如此复杂的计算过程,他居然也能够讲述的如此清楚。
  如果说之前林氏提出的林氏曲率张量是令人为之惊叹的创造,那么这段计算,就是林晓的炫技了。
  毕竟,在场的人中,谁都会计算,但是像这种计算量和计算速度,那就不是每个人都能达到的了。
  他们之中绝大多数人,如果要讲的话,大概就会直接说“由于这段计算过长,我就不再多做赘述了”。
  但显然,这样说的话就会对这场学术报告的完整性造成影响,而现在,林晓对这部分的完整讲述,便无疑地让这场报告变得完美了。
  哪怕是坐在下面的陶哲轩,此时也忍不住为之惊叹:“真不愧是林晓这个家伙啊,这段计算哪怕是我看起来都觉得有些头疼,真是厉害。”
  而在众人对这段炫技的惊叹中,时间已经悄然过去了两个小时之多。
  当然,整个证明的过程,也终于来到了结尾。
  “……所以综上所述,我们可以确定,NS方程的解,存在,且光滑。”
  “NS方程解的奥秘,至此被我们揭开了其第一层面纱,让我们得见其基础的性质。”
  “每一个流体单位的动量,都是可以解开的,它们有着规律可以被我们所掌控,而它最终的那个解,将是这一切的钥匙。”
  事实上已经被掌控了。
  林晓笑了笑,随后继续说道:“当然,关于NS方程的解到底是什么模样,还有待我们的继续开拓,这个经典物理学的终极问题,在我们的手上还没有彻底完结。”
  “不过我相信,达芬奇曾经的梦想,我们终将可以实现,许多数学家和物理学家们的目标,也终将会被我们所达成,那么,现在就让我们期待着那一天的到来吧。
  说到这,林晓也长出一口气。
  “那么我想,我的证明到此也就完毕了,感谢各位。”
  掌声倏然响起,底下的所有人都向林晓鼓起了掌,表达了敬意。
  先不论最终的结果如何,林晓这一口气讲了两个多小时,也算是挺认真的了。
  而后,随着掌声停下,林晓也就宣布进入下一个环节:“那么,接下来就让我挑战一下,各位的问题吧。”
  场下一片笑声,挑战?
  倒也挺像的。
  当然,这些座位上的绝大多数人已经等了许久了。
  很快,一双双手便举了起来,这些数学家们都已经等久了。
  这次提问的人比之前多上不少,因为研究NS方程的人很多,所以多多少少的也都对林晓的证明存在问题。
  而后,林晓也就一一点出提问者,然后进行了回答。
  首先是一位来自上京大学国际数学研究所的教授,这第一个问题,林晓便留给了自己人。
  这位教授问道:“林教授,根据你在第六页(2.1)中▽F  (T,  X)的定义,可以推导出△·F  T  =  0恒等式的一般形式,但是我想知道,你要如何解决系统一致性的问题呢?”
  林晓笑道:“不错的问题。”
  而后他也拿起自己的论文,看了几眼后,接着便拿起了粉笔,然后在旁边的黑板上开始写了起来。
  “首先,来看我在论文中提出的两个代数恒等式。”
  【∂Xj(∂detF)/∂F=0和……】
  “通过这两个代数恒等式,我们就可以十分轻松地得到下面的这个结果。”
  【∂Xj(detF*F−T)=  0】
  “因此,我们就能得到变形张量F的约束。”
  【▽j[Fjk^T/detF]=……】
  一大堆复杂的式子在林晓的笔下出现,而那位提问的京大数学教授则跟着林晓的思路,很快明白了他的问题应该如何作答了。
  露出一个恍然大悟的表情,他笑着道:“谢谢林教授,我明白了。”
  “不客气。”
  林晓微微一笑,然后继续问起了接下来的问题。
  提问也是个考验水平的东西,越厉害的数学家,自然也就能够问出更加关键的问题,或者说,是直击整个证明过程中最致命点的问题。
  不过,现在提问的数学家,问出的问题都基本上是自己有些不清楚的问题。
  所以林晓也就很快地把这些问题全部给解决了。
  于是就这样,举手的人越来越少,直到最后,终于没有谁提出问题了。
  而见到没有人举手了,林晓微微一笑,以为基本上没有谁有问题了,于是就程序性地问道:“还有人有问题吗?”
  底下的绝大多数人见到这一幕,也估计没有问题了,便都在心中感慨起来,林晓,又一次解决了数学界的著名问题。
  原本剩下的六大千禧年大奖难题,也在奇迹般的两年之内被解决了两个……哦不,严格来说,两者时间相差也就一年。
  不过,正当这部分人都这么想着的时候,前排的费弗曼,也终于举起了他的手。
  场上顿时安静了片刻。
  “那是费弗曼吗?”坐在另外一排的陶哲轩认出了这位举手的数学家,眉头不由一挑,随后便露出了笑容。
  就是说嘛,查尔斯·费弗曼要是都没有问题的话,那就显得有些奇怪了。
  “倒是不知道,林晓这下要如何回答呢?”
  陶哲轩一个战术后仰靠在了座椅靠背上,露出了看戏的表情。
  而台上的林晓见到费弗曼举起手后,也微微一愣,他当然是认识费弗曼的,毕竟以前和普林斯顿高等研究院的这些数学家们交流的时候,费弗曼自然也在其中。
  他也同样意识到,这个压轴的问题,大概不会多简单了。
  当然,不管问题是怎样,他也来者不拒就是了。
  “费弗曼教授,你请问吧。”
  查尔斯·费弗曼笑了笑,说道:“林教授你好。”
  “自从看完了你的证明后,我就感到十分的高兴,因为这意味着我追寻了许久的问题,大概是得到了一个答案。”
  “当然,在此之前,我也不得不向你提出莪的最后一个问题。”
  “在研究黎曼流形曲率张量的代数性质中,我们可以用到曲率张量的不可约分解,该方法也为分析不可约基提供了有力的工具,并且为确定任意黎曼多项式的线性相关性提供了有力的工具。”
  “但是,我们都知道,关于NS方程问题的解决,我们必须要用到非线性的方法,场中,陶教授相信可以对此做出证明。”
  在场的人们都看向场中的陶哲轩,这位什么都懂一点的陶教授,当初在NS方程上的那篇论文,可是给诸多数学家都带去了不少的启发。
  而费弗曼瞥了一眼那因为突然被CUE而茫然的陶哲轩,心中哼哼一笑,谁让陶哲轩刚才在他面前说自己研究了“一点”?
  不过随后,他便接着对林晓说道:“那么,回到林教授你的林氏曲率张量理论这一部分中,我现在想问的就是,你声称这个理论能够描述那些非线性的流形,那么在论文的第34页,(4.3)部分中,你的这个方法中,似乎并没有表现出非线性,而是线性,然后你在线性的条件下,完成了你的证明。”
  “所以,我也就对你的这一部分,产生了问题。”
  “你难道找到了让线性和非线性统一的方法吗?”
  随着费弗曼提出了问题,在场的所有人顿时都拿起手上的论文,然后翻到了34页。
  这个看起来无比顺畅的论证过程,此时经过费弗曼的提出后,在场的不少人顿时都露出了恍然大悟的表情。
  就连费弗曼旁边的那些普林斯顿高等研究院的教授们,此时也都睁大了眼睛。
  “原来是这个问题……”
  “嘶,线性和非线性的统一?实在太可怕了。”
  “这下,林晓大概真的算是遇到问题了。”
  每个人都抬起头,看向了林晓。
  这个问题,如同直接找到了阿克琉斯之踵,让整个证明过程都变得岌岌可危了。
  现在,林晓该如何解决这个问题呢?
  然而,让所有人都意外的是,林晓的表情却没有任何慌张,甚至还有一种“总算被发现了”的,还有些高兴的表情。
  他笑着道:“我在写出这个步骤之后,就一直想过,会不会太隐蔽了,到时候不会有人发现,但是万幸,费弗曼教授,你发现了,谢谢你。”
  费弗曼和其他人顿时都吃惊起来。
  万幸?
  你是认真的?
  如此直击痛点的问题,在你眼中倒成了被提出来十分的幸运,甚至还担心不会有人提出来。
  费弗曼:“……呵呵,不用谢。”
  林晓淡然一笑,而后看向在场的所有人,问道:“但各位就没有想过,线性和非线性,又如何不能统一呢?”


  (https://www.uuubqg.cc/42829_42829121/708374160.html)


1秒记住笔趣阁:www.uuubqg.cc。手机版阅读网址:m.uuubqg.cc